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Website for analysis 
Tweet sentimental 

Groups:  

Negative, 

Positive,  

Neutral 

Tweet Emotion 
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Conditional Probability 

              P(Class | Tweet) = P(Class | Features) 

 

P(Negative | Tweet) 

P(Positive | Tweet) 

P(Neutral | Tweet) 
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Tweet Emotion 
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Barrier 
    Coordinate Threads 

Atomic Integer 
    Aggregate Multiple Operations 

    Thread safe operation. 

ConcurrentHashMap 
    Thread-safe, lock on key level. 

Data Structures  
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Java Concurrent Model 
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Thread Pool Model 

Fork and Join Model 

 

Discussed in later slides. 
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Java Concurrent Model 

Programming Models 
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Data Fetcher Feature 
Extraction 

Max Entropy 
Model 

Two Kinds Feature Extraction 

1. Model Training Process (Reduce training time) 

     Massive Training Data - Data Level Parallelism. 

 

 

2. Execution Process (Reduce execution time) 

     Parallel parsing for User Input. 
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Feature Extraction Procedure 

User Input Feature 
Extraction 

Max Entropy 
Model Prediction 
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Data level parallelism (Reduce Training Time) 

 

    1. Thread Pool Model 

    2. Fork and Join Model 
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Data Level Parallelism 
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Using ThreadPoolExecutor Service.  

 

Advantages 
    Thread Scheduling by JVM. 

    Reduce the cost of spawning new thread (reuse thread). 
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Data Level Parallelism (Cont’) 

Thread Pool Model 
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Data Level Parallelism (Cont’) 

Fork And Join Model 
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Reduce the training time 

Performance Speed Up 
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User Input -> feature extraction -> output 

 

Parsing is most time consuming in feature extraction 

 

Parallel Parsing-> reduce response time 
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Parsing 
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Lexicon 
Grammar Rules 
      S -> NP VP 
      NP -> JJ JJ NN 
      ……. 
POS Tags 
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Parsing 
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Dynamic Programming 

Dependency between cells – Potential Thread Blocking 
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Parsing – CKY Algorithm 

[0,2] Grammar Rule: NP -> D N 
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0,1          0,2            0,3 

1,2            1,3           
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Parsing – CKY Algorithm 

Dynamic Programming 

Dependency between cells – Potential Thread Blocking 

 

(0,3)<- (0,1) (1,3)  
(0,3)<-(0,2) (2,3) 
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Parsing – CKY Algorithm 

Pruning Dependency 
 

Transitive dependencies are redundant and can be reduced. 
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Recursive Call 

    Stack space consumption directly related to the sentence length. 

 

Requires Threads Join 

    Bring thread block in the Join Step.  
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Top Down vs. Bottom Up Parsing 

Top Down Parsing 
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Non blocking 

    Eliminate the thread join operation. 

 

Spawn threads bottom up 

    Curtail the blocking threads, especially in the initial iterations. 

 

Use This Parsing! 
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Top Down vs. Bottom Up Parsing (Cont’) 

Bottom Up Parsing 
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Dependency Reversion 

Track Cell Dependency Count 

Spawn New Thread when dependencies are satisfied 
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Parallel On Cell 

Bottom Up Parsing 
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Imbalance Load 
    Thread Number differ between different layers 

    Bottom Layer: N Threads (N is Sentence Length) 

    Last Layer: 1 thread 

    ith Layer: N-i+1 threads 
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Disadvantage of Parallel On Cell 
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Non-Blocking 

Cell Pair Coordination 
Finish computing current cell when 

all dependent pairs are finished. 

Pair / Pair Coordination 
Shared state structure, multiple 

threads have to update same cell. 
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Refined On Cell Parallelism (Cont’) 

Pair Level Parallelism 
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Cell Pair Coordination 

Pair Dependency Count  
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Refined On Cell Parallelism 

Pair Level Parallelism 

Cell Thread 
Pair dependency 

count=3 

Pair 
Thread 

Pair 
Thread Pair 

Thread 
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Share State Structure  

Lock on stateMap Object 

Cause thread blocking 
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Refined On Cell Parallelism (Cont’) 

Pair Level Parallelism 
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Non-Share State Structure 

   Every pair threads has its own stateMap object. 

    Avoid Locking Shared Objects 

    stateMap needs to be Merged by Cell Level Thread. 
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Refined On Cell Parallelism (Cont’) 

Pair Level Parallelism 
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Refined On Cell Parallelism (Cont’) 

Performance Comparsion (Share State/Non Share State) 

Configuration 
CPU 16-Core 2.1GHz AMD Opteron 6272 

Memory 70GB 

Data size: 86 sentences 
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Refined On Cell Parallelism (Cont’) 

Memory Footprint 

0 1 2 3 4 5 6 7 8 9 

16 Shared State 
Non-share State 

GB 

T
h
r
e
a
d 
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Share state structure vs. Non-share state structure 
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Pros Cons 
Non-Share State No lock -> non 

blocking 
 

Requires Merge 
Requires more 
Memory 
 

Share State No merge required 
 
 

Less efficiency 
compared to Non-
share model when 
enough memory 
ensured 

Refined On Cell Parallelism (Cont’) 

Pair Level Parallelism 
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Feature extraction achieves performance boost by 
parallelization.  

Parallel data reduces training time.  

Parallel parsing reduces response time.  

    Bottom up eliminates lock.  

Trade off between shared data access and non-share data 
access. 
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Conclusion 


