
Feature Extraction Optimization for Multi-
Core Architecture in Java

Maochen Guan (mg3364@nyu.edu)

Tianshuo Deng (td859@nyu.edu)

New York University 2012

1

New York University

Website for analysis
Tweet sentimental

Groups:

Negative,

Positive,

Neutral

Tweet Emotion

2

New York University

Conditional Probability

 P(Class | Tweet) = P(Class | Features)

P(Negative | Tweet)

P(Positive | Tweet)

P(Neutral | Tweet)

3

Tweet Emotion

New York University

Barrier
 Coordinate Threads

Atomic Integer
 Aggregate Multiple Operations

 Thread safe operation.

ConcurrentHashMap
 Thread-safe, lock on key level.

Data Structures

4

Java Concurrent Model

New York University

Thread Pool Model

Fork and Join Model

Discussed in later slides.

5

Java Concurrent Model

Programming Models

New York University

Data Fetcher Feature
Extraction

Max Entropy
Model

Two Kinds Feature Extraction

1. Model Training Process (Reduce training time)

 Massive Training Data - Data Level Parallelism.

2. Execution Process (Reduce execution time)

 Parallel parsing for User Input.

6

Feature Extraction Procedure

User Input Feature
Extraction

Max Entropy
Model Prediction

New York University

Data level parallelism (Reduce Training Time)

 1. Thread Pool Model

 2. Fork and Join Model

7

Data Level Parallelism

New York University

Using ThreadPoolExecutor Service.

Advantages
 Thread Scheduling by JVM.

 Reduce the cost of spawning new thread (reuse thread).

8

Data Level Parallelism (Cont’)

Thread Pool Model

New York University 9

Data Level Parallelism (Cont’)

Fork And Join Model

New York University 10

Reduce the training time

Performance Speed Up

New York University

User Input -> feature extraction -> output

Parsing is most time consuming in feature extraction

Parallel Parsing-> reduce response time

11

Parsing

New York University

Lexicon
Grammar Rules
 S -> NP VP
 NP -> JJ JJ NN
 …….
POS Tags

12

Parsing

New York University

Dynamic Programming

Dependency between cells – Potential Thread Blocking

13

Parsing – CKY Algorithm

[0,2] Grammar Rule: NP -> D N

New York University

0,1 0,2 0,3

1,2 1,3

2,3

14

Parsing – CKY Algorithm

Dynamic Programming

Dependency between cells – Potential Thread Blocking

(0,3)<- (0,1) (1,3)
(0,3)<-(0,2) (2,3)

New York University 15

Parsing – CKY Algorithm

Pruning Dependency

Transitive dependencies are redundant and can be reduced.

New York University

Recursive Call

 Stack space consumption directly related to the sentence length.

Requires Threads Join

 Bring thread block in the Join Step.

16

Top Down vs. Bottom Up Parsing

Top Down Parsing

New York University

Non blocking

 Eliminate the thread join operation.

Spawn threads bottom up

 Curtail the blocking threads, especially in the initial iterations.

Use This Parsing!

17

Top Down vs. Bottom Up Parsing (Cont’)

Bottom Up Parsing

New York University

Dependency Reversion

Track Cell Dependency Count

Spawn New Thread when dependencies are satisfied

18

Parallel On Cell

Bottom Up Parsing

New York University

Imbalance Load
 Thread Number differ between different layers

 Bottom Layer: N Threads (N is Sentence Length)

 Last Layer: 1 thread

 ith Layer: N-i+1 threads

19

Disadvantage of Parallel On Cell

New York University

Non-Blocking

Cell Pair Coordination
Finish computing current cell when

all dependent pairs are finished.

Pair / Pair Coordination
Shared state structure, multiple

threads have to update same cell.

20

Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

New York University

Cell Pair Coordination

Pair Dependency Count

21

Refined On Cell Parallelism

Pair Level Parallelism

Cell Thread
Pair dependency

count=3

Pair
Thread

Pair
Thread Pair

Thread

New York University

Share State Structure

Lock on stateMap Object

Cause thread blocking

22

Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

New York University

Non-Share State Structure

 Every pair threads has its own stateMap object.

 Avoid Locking Shared Objects

 stateMap needs to be Merged by Cell Level Thread.

23

Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

New York University 24

Refined On Cell Parallelism (Cont’)

Performance Comparsion (Share State/Non Share State)

Configuration
CPU 16-Core 2.1GHz AMD Opteron 6272

Memory 70GB

Data size: 86 sentences

New York University 25

Refined On Cell Parallelism (Cont’)

Memory Footprint

0 1 2 3 4 5 6 7 8 9

16 Shared State
Non-share State

GB

T
h
r
e
a
d

New York University

Share state structure vs. Non-share state structure

26

Pros Cons
Non-Share State No lock -> non

blocking

Requires Merge
Requires more
Memory

Share State No merge required

Less efficiency
compared to Non-
share model when
enough memory
ensured

Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

New York University

Feature extraction achieves performance boost by
parallelization.

Parallel data reduces training time.

Parallel parsing reduces response time.

 Bottom up eliminates lock.

Trade off between shared data access and non-share data
access.

27

Conclusion

