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Tweet Emotion ((T/z

Conditional Probability
P(Class | Tweet) = P(Class | Features)

P(Negative | Tweet)
P(Positive | Tweet)

P(Neutral | Tweet)
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Java Concurrent Model ((T/z

Data Structures

Barrier

Coordinate Threads

Atomic Integer
Aggregate Multiple Operations

Thread safe operation.

ConcurrentHashMap

Thread-safe, lock on key level.
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Java Concurrent Model ((T/z

Programming Models

Thread Pool Model
Fork and Join Model

Discussed in later slides.
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Feature Extraction Procedure ((T/z

Two Kinds Feature Extraction

1. Model Training Process (Reduce training time)

Massive Training Data - Data Level Parallelism.

Max Entropy

2. Execution Process (Reduce execution time)

Parallel parsing for User Input.

Max Entropy ..
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Data Level Parallelism ((T/z

Data level parallelism (Reduce Training Time)

1. Thread Pool Model

2. Fork and Join Model
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Data Level Parallelism (Cont’) ((T/z

Thread Pool Model

Task Queue

- (e ) —— O _l
thread — [SIS|[O][3][O][O

Completed Tasks \
-~ © «— 0O
Using ThreadPoolExecutor Service.

Advantages
Thread Scheduling by JVM.

Reduce the cost of spawning new thread (reuse thread).
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Data Level Parallelism (Cont’) ((T/z

Fork And Join Model

ForkJoinTask

Task 1
Al N
p" .
join() join() Task 2 Tusk 3

fork() fork()

‘ / \\\ ‘ ,\‘\ \\
/ \ \ ¥ \ =D
Task 6 Task 5 \
/ Tusk 9 ’
Child ForkJoinTask Child ForkJoinTask 2
Task 7 \
Task 3 ’
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Performance Speed Up ((T//

Reduce the training time

0:25:55

& Sequential
o0 & ThreadPool
0:20:10 Fork and Join
0:17:17
0:14:24
0:11:31

0:08:38

0:05:456

0:02:53

0:00:00
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User Input -> feature extraction -> output
Parsing is most time consuming in feature extraction

Parallel Parsing-> reduce response time

New York University



Parsing
S
/
NP VP
//7\ /\
JJ JJ NN vBZ S
| | | I I
Left cerebellar hemisphere appears VP
//\
TO VP
| ///\
Lexicon to VIB /NP\
Grammar Rules demonstrate NP op
S -> NP VP I /\
NP -> JJ JJ NN NNS IN NP
....... | | T~
POS Tags areas of VBN NN
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Parsing — CKY Algorithm ((T/z

Dynamic Programming

Dependency between cells — Potential Thread Blocking

POSSP NP
[0 1] [0 2] [0,3] [0,4] [0 5] [0 6]

POSS
[2,3]

V, VP
[4,5] [4 6]

[0,2] Grammar Rule: NP -> D N
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Parsing — CKY Algorithm

Dynamic Programming

Dependency between cells — Potential Thread Blocking

(0,3)<-(0,1) (1,3)
(0,3)<-(0,2) (2,3)
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Parsing — CKY Algorithm

Pruning Dependency

Transitive dependencies are redundant and can be reduced.
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Top Down vs. Bottom Up Parsing

Top Down Parsing

Recursive Call

Stack space consumption directly related to the sentence length.

Requires Threads Join

Bring thread block in the Join Step.
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Top Down vs. Bottom Up Parsing (Cont’)

Bottom Up Parsing

Non blocking

Eliminate the thread join operation.

Spawn threads bottom up

Curtail the blocking threads, especially in the initial iterations.

Use This Parsing!
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Bottom Up Parsing

Dependency Reversion

Track Cell Dependency Count

Spawn New Thread when dependencies are satisfied
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Disadvantage of Parallel On Cell

Imbalance Load

Thread Number differ between different layers
Bottom Layer: N Threads (N is Sentence Length)
Last Layer: 1 thread

i Layer: N-i+1 threads
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Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

Non-Blocking

Cell Pair Coordination
Finish computing current cell when

all dependent pairs are finished.

Pair / Pair Coordination
Shared state structure, multiple

threads have to update same cell.
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Refined On Cell Parallelism

Pair Level Parallelism

Cell Pair Coordination

Pair Dependency Count

Cell Thread

Pair dependency
count=3

New York University
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Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

Share State Structure
Lock on stateMap Object

Cause thread blocking

W

synchronized (currentState) {

if (currentState.getScore() < updateScore) {

currentState.state = stateX;
currentState.score = updateScore;

currentState.children = Arrays.aslist(
leftChildState, rightChildState);

main_____Im | -

pool-1-thread-1

pool-1-thread-10
pool-1-thread-11
pool-1-thread-12
pool-1-thread-13
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Refined On Cell Parallelism (Cont’)

Pair Level Parallelism

Non-Share State Structure
Every pair threads has its own stateMap object.
Avoid Locking Shared Obijects

stateMap needs to be Merged by Cell Level Thread.

W

main . - —

pool-1-thread-1

pool-1-thread-10
pool-1-thread-11
pool-1-thread-12
pool-1-thread-13

T T T T T T T T
10s 20s 30s 40s 50s 1m 1m 10s 1m 20s
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Refined On Cell Parallelism (Cont’)

Performance Comparsion (Share State/Non Share State)

Configuration

CPU 16-Core 2.1GHz AMD Opteron 6272
Memory 70GB

Data size: 86 sentences 7 020.10

« Shared StateMap
“ Non-shared StateMap

0:17:17

0:14:24

0:111:31 ——

0:.08:38

0:05:46

I 0:02:53

0:00:00 ~
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Refined On Cell Parallelism (Cont’) ((Tzz

9 Shared State
“'Non-share State
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Refined On Cell Parallelism (Cont’) W

Pair Level Parallelism

Share state structure vs. Non-share state structure

Non-Share State

Share State

No lock -> non
blocking

No merge required

New York University

Requires Merge
Requires more
Memory

Less efficiency
compared to Non-
share model when
enough memory
ensured
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Conclusion ((T/z

Feature extraction achieves performance boost by
parallelization.

Parallel data reduces training time.

Parallel parsing reduces response time.
Bottom up eliminates lock.

Trade off between shared data access and non-share data
access.
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