
Feature Extraction Algorithm Optimization for Multicore

Architecture in Java

Tianshuo Deng Maochen Guan
Computer Science Department

New York University

{td859,mg3364}@nyu.edu

Abstract

In this paper, we investigate different methods to optimize
performance in multicore architecture for feature extrac-
tion procedure in TweetEmotion.com. And feature extrac-
tion from sentences is one of the time consuming proce-
dure. This paper focus on reducing training time and re-
sponse time by parallelizing training procedure and parsing
algorithm. Furthermore, we investigate bottom up parsing
technique and demonstrate how to produce a non-locking
algorithm.

1 Introduction

TweetEmotion.com provides sentiment analysis service for
tweets using natural language processing techniques. Given
a tweet and a topic, the algorithm used in TweetEmo-
tion.com classifies the tweet to 3 classes, which are Pos-
itive, Negative and Neutral, according to that topic. For
example, given ”I love iPad” and topic ”iPad”, the tweet
will be classified as positive. Machine learning algorithm,
Maximum Entropy, is used to do the classification.

This paper discusses the optimization of feature ex-
traction procedure for TweetEmotion.com to reduce both
training time and response time. The techniques
used for parallelization in this paper can be applied to
NLP(Natural Language Processing) applications widely.

We first introduce the support for concurrent program-
ming in latest Java release and the programming models
including ThreadPool and Fork and Join Model. Then we
discuss two scenarios where the feature extraction proce-
dure can be optimized.

Parallel Training In training scenario, massive data
are divided into batches and processed concurrently. Par-
allelization of training procedure reduces the time for train-
ing models in NLP system.

Parallel Parsing In execution scenario, parsing takes
most of the time during feature extraction (Figure[1]). in
order to improve the response time for an NLP system,
parsing time for each sentence needs to be optimized. In
Section[5.4], context-free parsing algorithm CKY is ana-
lyzed and parallelized. This paper investigates different
ways of optimizing the CKY algorithm and compare those
different approaches. The techniques, lock-free algorithm,

bottom-up approach can also be applied to other dynamic
programming algorithms.

Figure 1: Time of extracting feature from a sentence of
length 20

2 Literature Survey

2.1 Concurrent Programming in Java

Divide-and-Conquer Fork and Join technique for paral-
lelization is widely used in scientific computing. After
dividing a problem into two or more sub-problems, the
method solves the sub-problems in parallel. Typically, the
subproblems are solved recursively and thus the next divide
step yields even more sub-problems for solving in parallel.

In paper[?], Fork and Join framework is implemented us-
ing Thread class in Java. It also discusses the heart of Fork
and Join framework the stealing scheduler. The heart of a
Fork and Join framework lies in its lightweight scheduling
mechanics.

Nonetheless, it doesn’t investigate the latest feature pro-
vided by Java 7. In our project, we will examine how to
utilize the latest native support for Fork and Join model .

In paper[?], it proposed how to implement work stealing.
It allows efficient parallelization of irregular workloads. In
our feature extraction process, workload varies depends on
the complexity of each tweet. Those research focuses on
the implementation of Fork and Join without investigating
the runtime impact for the Fork and Join model. They are
not focused on the domain of NLP. In our project we will
evaluate the usage of Fork and Join Model and compare
it with a simple Thread Pool mode. The runtime impact
under Java 7 is experimented with different memory size,
thread number.

Page 1

2.2 Parallelization in Natural Lan-
guage Processing

In NLP with machine learning approach, map-reduce is
widely used. But generally, map-reduce is used for mul-
tiple machines with distributed memory. This paper[?]
describes ways to do distributed computing for Natural
Language Processing, which divides training data among
multiple CPUs for faster processing.

However, this paper does not discuss how to utilize mul-
ticore architecture. In our project, not only do we split
training data into different batch/tasks, but also for each
training record, we are taking advantage of shared memory,
which means we have threads of parsing algorithm working
in parallel for the same training record that allows us to
do parallelization in a more fine-grained level and improve
the response time of a NLP system.

3 Proposed Idea

First, the sequential program of feature extraction is mod-
ified to be thread-safe to support multi-threading.

Then we parallelize the feature extraction procedure for
training on data level. Data are partitioned into batches,
which reduces the training time of the system. Fork and
Join model and Thread Pool model are applied and com-
pared.

Beyond that, the parsing algorithm used in the proce-
dure can also be parallelized. Most parsing algorithms use
dynamic programming. In CKY algorithm, both bottom-
up and top-down approaches can be used. This paper will
discuss how to use a bottom-up approach to implement
CKY algorithm where most threads joining/blocking can
be avoided when using non-blocking algorithm and avoid-
ing shared data among threads.

Finally we compare those approaches and see how they
perform in different software and hardware configurations.
As later discussion, when memory is sufficient, by main-
taining state for each threads, performance can be greatly
improved comparing to using shared data among threads.
But when memory is limited, it may introduce frequent GC
operations which degrades the performance of the system.

In practices, decisions should be made based on the en-
vironment and setup of the NLP system.

4 Experimental Setup

Language We use Java 7 as language of choice. In the
area of Natural Language Processing, Java is widely used,
because of its sufficient support to regular expression and
text processing. The Object-Oriented structure also ben-
efits the work in software engineering. JVM is highly op-
timized and platform independent. Nowadays more and
more applications are developed on JVM, so the result of
our project will be widely applicable for NLP applications
and applications running on JVM platform.

Parsing Framework CKY is used to parse the input
and construct the parsing tree. It is a dynamic programing
method for parsing a sentence with context-free grammar.

Profiling YourKit is a famous Java profiling tool, it sup-
ports multi-threaded profiling. We use YourKit to profile
following aspects of our program in different parallel model:

1. Execution Time

In feature extraction procedure, there is no interaction
with other procedures. It could be considered as a
single step in text mining. So execution time is an
important metric. In the experiment, we measure the
time for extracting features from a certain amount of
tweets.

2. CPU usage

We compare the cpu usage and its distribution on mul-
ticore architecture.

3. Thread Status

From the profiler, we check the status of threads and
will see if a specific thread is blocked, sleeping, waiting
or running.

4. Memory Usage

Memory usage module identifies whether the bottle-
neck is CPU or memory.

5 Experiments and Discussion

5.1 Feature Extraction Procedure

Feature extraction procedure is executed when training the
classifier and getting new input from user. In TweetEmo-
tion.com the procedure is defined as: Given the input sen-
tence, output the features for that sentence. There are two
issues that hinder the improvement of performance in most
modern NLP application.

First, the data size involved in training a model is huge.
This is a very common issue for statistical machine learning
algorithm. With the increment of data size, training time
for a NLP system is significantly increased.

Second issue is specific for Natural Language Processing
application. Parsing a sentence is slow. In NLP applica-
tions, parsing is an essential step for in-depth analysis. It
produces a parsing tree for a sentence which reveals phrase
structures and their dependencies. Two widely used pars-
ing algorithms, CKY algorithm and agenda parsing algo-
rithm, take exponential time relative to the length of the
sentence. Longer parsing time means longer response time
for an NLP system.

In Section[5.3], we discuss the first issue by parallel train-
ing data. In Section[5.4] we discuss how to optimize the
parsing algorithm for parallelization.

5.2 Concurrent Programming in Java 7

5.2.1 Thread Pool Model

Thread pool model is a concurrent programming solution
provided by Java natively. It reduces the cost of creating
new thread per request. Since Java 7, several classes are
added to better support thread pool programming model.
In addition, user can designate the number of threads which
is an important factor affecting the performance.

Page 2

5.2.2 Fork and Join Model

In Java 7, support for fork and join model is added. By
implementing RecursiveAction or RecursiveTask interface
one can easily define and implement a fork and join model.
Similar to thread pool model, fork and join model also uses
thread pooling where parallelism can be specified. By de-
fault it uses the number of cores as the number of active
threads in the thread pool. Moreover, work stealing is im-
plemented to solve the imbalanced workload issue.

5.2.3 Concurrent Data Structures

Barrier In this project, we prevent joining the threads
spawned in order to get rid of threads blocking. Nonethe-
less, main thread still needs to be coordinated with the
working threads. Thus, a barrier is used for this purpose.
The barrier concept is the same as OpenMP barrier. In
Java, a class called CyclicBarrier() is defined for the bar-
rier type. And barrier.await() method can be invoked at
the end of every thread.

AtomicInteger In bottom up parsing which is dis-
cussed in Section[5.5], to build a lock-free algorithm, depen-
dency counter is used to track dependencies among cells.
Thus, every cell should maintain a dependency counter to
represent its state. However, the dependency counter will
be manipulated by multiple dependent cell threads. Hence,
by using AtomicInterger as dependency counter, the race
condition can be avoided.

ConcurrentHashmap In Section[5.6], Concurren-
tHashmap is used to store the best parse for each cell.
ConcurrentHashmap allows more fine-grained locking com-
paring to Hashtable. Locking is added for writing to the
same key in the ConcurrentHashmap. It provides thread-
safety while not sacrificing performance too much.

5.3 Training Data Level Parallelization

Extracting features from training data is an embarrassingly
parallel process because there is no dependency between
data. It means the feature extraction procedure can be
break down to batches and executed concurrently.

5.3.1 Fork and Join model

A problem is break down to subproblems of smaller size and
solved recursively. Following code shows how to recursively
extract features from a huge dataset:

Listing 1: fork dataset

protected List <List <String >> compute () {
if(high - low <= SEQUENTIAL_THRESHOLD) {

return atomicCompute ();
} else {

int mid = low + (high - low) / 2;
ExtractionTask left = new ExtractionTask(

sentenceSet , low , mid);
ExtractionTask right = new ExtractionTask(

sentenceSet , mid , high);
left.fork();
right.fork();
List <List <String >> rightAns = right.join();
List <List <String >> leftAns = left.compute ();
rightAns.addAll(leftAns);

return rightAns;
}

}

The base case of the fork and join task is parsing and
extracting features from the given sentence directly.

5.3.2 Thread Pool Model

In the thread pool model, we split input data into batches
and assign feature extraction threads based on the batch
and join all of the result by the future returned by children
threads. The following is batch division code

Listing 2: batch process using thread pool

for (int i = initIndex; i < tweetList.size(); i = i
+ batchNumber) {
int startIndex = ((i - batchNumber + 1) > 0) ? (

i - batchNumber + 1) : 0;
List <TweetWithFilename > batchEntries = tweetList

.subList(startIndex , i + 1);
Callable <List <String >> extractionThread = new

ExtractionCallable(batchEntries);
Future <List <String >> submit = executor.submit(

extractionThread);
futureList.add(submit);

}

5.3.3 Result

We benchmarked those two models on 86 sentences from
Penn Treebank on 16-Core 2.1GHz AMD Opteron 6272 ma-
chine with 256GB memory. From Figure[2], training time
is greatly reduced in parallel programs. But there is little
difference between fork and join model, and thread pool
model. Because unlike function used in scientific comput-
ing, there is less joining operations in the fork and join
model when parallelizing training. Two models essentially
performs same operations.

Figure 2: Parsing time for 86 sentences

5.4 CKY Parsing Algorithm

The CockeYoungerKasami (CYK) algorithm (alternatively
called CKY) is a parsing algorithm for context-free gram-
mars. It employs bottom-up parsing and dynamic pro-
gramming.

The importance of the CYK algorithm stems from its
high efficiency in certain situations. Using Landau sym-
bols, the worst case running time of CYK is θ(n3 ∗ |g|),
where n is the length of the parsed string and |G| is the
size of the CNF grammar G. This makes it one of the most

Page 3

efficient parsing algorithms in terms of worst-case asymp-
totic complexity, although other algorithms exist with bet-
ter average running time in many practical scenarios.

The following is the brief step of the CKY Parsing:

1. The CKY Parsing creates a triangular table represent-
ing all spans in the sentence from 0 (the position be-
fore the first word) to N the position after sentence of
length N.

2. Traverse for each possible combination

Listing 3: traverse pairs

For j from 1 to N do:
Fill in one span of length 1 using a POS

rules , e.g., V ate
For i from 0 to j-2

For k from i+1 to j-1:
Add all matching nonterminals to [i,j]

in table

5.5 Parallel Parsing on Cell Level

5.5.1 Pruning dependency

As discussed in Section[5.4], there are dependencies be-
tween two cells for different spans. For example, to cal-
culate the best parse from span(0, 3), the best parse for
span(0, 1), span(1, 3) and span(0, 2), span(2, 3) should al-
ready be generated. Figure[3] illustrates the dependency
between cells for each span.

Figure 3: Dependency of Cells

Each arc represents dependency between two cells. From
the above graph there are redundant dependencies that
are transitive. For example, if cell0,3 depends on cell0,2,
and cell0,2 depends on cell0,1, then we can conclude that
cell0,3 is dependent on cell0,1 without explicitly specifying
the dependency between cell0,3 and cell0,1. This kind of re-
dundant dependency can be pruned to reduce the number
of coordination among cell threads. Figure[4] illustrates a
CKY chart with pruned dependency.

5.5.2 Bottom Up Approach (Non-blocking al-
gorithm)

CKY algorithm can be implemented in both bottom-
up and top-down approaches. In bottom-up approach
non-blocking algorithm can be implemented to eliminate
threads joining or blocking. The algorithm is defined as
the following:

Figure 4: Pruning Dependencies

1. Set dependency count to 2 for all cells except the di-
agonal. (As discussed in Section[5.5.1], after pruning,
each cell only depends on its beneath and left cell)

2. Compute the current cell

(a) For the diagonal cells, filling the cell using lexi-
con tagger. (For example, for the word drive, it
may have probability of 65% of being a verb and
35% of being a noun)

(b) For the rest, filling the cell by applying grammar:
celli,j −→ celli,k cellk,j

3. Decrease the dependency count for the above and right
cell by 1. If the dependency count is decreased to 0,
spawn the cell thread for that cell:

dependencyCount(celli−1,j)− 1
dependencyCount(celli,j+1)− 1

4. Repeat step 2 until cell0,lengthsentence is computed

In bottom-up approach, most thread joining or blocking
steps in top-down parsing can be avoided. Threads are
spawned only when its dependencies are satisfied. Hence,
there are less chance for threads blocking and waiting.

We use atomic integer to track dependency to avoid race
condition when multiple cell threads accessing the same
cell. Barrier is used to coordinate the cell threads and the
main thread. Barrier.await() method will be called only
after the parsing is finished.

Listing 4: Barrier coordinates main threads and cell
threads

if (cell.i == 0 && cell.j == cell.CKYTable.
sentenceLength)

parser.barrier.await();

5.5.3 Result

The program is tested on 16-Core 2.1GHz AMD Opteron
6272 machine with 256GB memory. As shown in Figure[5],
parsing time for 86 test sentences is greatly reduce compar-
ing to sequential program. With more threads, the parallel
algorithm take the advantages of multicore architecture.

Page 4

Figure 5: Parallel Non-locking CKY parsing compared with
Sequential CKY parsing

5.6 Pair Level Parallelization

From Section[5.5], the workload is imbalanced in the cell
level parallelism. With the processing of the cells, paral-
lelism is limited by the length of the diagonal. And once
proceeded to the last cell, only single thread is running with
huge workload. It has to calculate the pairs, number of
which equals to the Lengthsentence. Thus, in order to dis-
tribute the workload for cell threads, pair level paralleliza-
tion is introduced. Within a cell thread, pair threads are
being assigned to calculate each pair of spans. Hence, even
in the last cell, Lengthsentence threads will be spawned.

5.6.1 Coordination between cell threads and
pair threads

As mentioned above, there are dependencies between cells,
specifically, cell[i][j] depends on cell[i− 1][j] and cell[i][j+
1]. Thus, pair dependency counter (Figure[6]) is introduced
to track the dependencies. By updating the counter, cell
thread can be spawned. The following shows the coor-
dination between cell thread and pair threads using pair
dependency counter to avoid locking:

1. decrease the dependency counter in cell[i − 1][j] and
cell[i][j + 1] by 1.

2. spawn the cell thread of cell[i−1][j] (above cell) if the
dependency count value is 0.

3. spawn the cell thread of cell[i][j+ 1] (right cell) if the
dependency count value is 0.

Figure 6: pair dependency count

5.6.2 Coordination among pairs

In this type of coordination, pair threads need to update
the cell that contains the possible parsing result. Thus,

there are two different approaches.

Sharing state among pair threads requires a syn-
chronized shared stateMap object in cell thread. All sub-
sided pair threads update the same stateMap object. In
this project, stateMap object is implemented by Concur-
rentHashMap that discussed in Section[5.2.3].

This approach doesn’t require extra result merging step
in cell threads. Nonetheless, it introduces lock (Figure[7])
because shared stateMap object has to be synchronized.
As a result, it may cause potential pair threads blocking
that decreases the performance.

Figure 7: Pair threads blocked

Separate state for each pair thread , on the other
side, allows every pair thread have its own stateMap object.
After pair threads finish, cell thread needs to merge all of
the stateMaps holding by the pair threads. Its similar to
MapReduce model used in distributed computing.

The advantage is that no coordination is required among
pair threads. Since pair threads do not write to the
same data structure, no data synchronization is required
(Figure[8]).

Figure 8: Pair threads without blocking

However, maintaining states within each thread requires
significant memory space.

5.6.3 Result

In the experiment, there are 39832 training sentences and
86 test sentences from Penn Treebank. When memory is
sufficient, separate state for each pair thread increases the
performance by eliminating synchronizations among shared
data (Figure[9]). But on the other side (Figure[10]), it
takes much more memory and in an computing environ-
ment where memory is limited, it may degrade the perfor-
mance due to frequent garbage collection operations.

Page 5

Figure 9: CPU Time Comparison

Figure 10: Memory Footprint Comparison

6 Conclusions

Feature extraction procedure in NLP system can achieve
significant performance boost by parallelization. In data
level parallelism, training time can be reduced. Fur-
thermore, response time can be reduced by implement-
ing parallel parsing algorithm. Parallel parsing algorithm
needs careful examination of the dependency among com-
putations. Based on this, lock-free algorithm can be
implemented in a bottom-up approach. Beyond that,
shared data access can also be optimized as discussed in
Section[5.6.2].

But to further improve the performance, the software
and hardware configuration need to be take into consider-
ation. Trade-offs of memory and CPU should be made to
maximize the performance. One example is as discussed in
Section[5.6.2], avoiding shared data access leads to higher
memory usage which may downgrade the performance of
the system when memory is limited. With the develop-
ment of multicore hardware, parallelizing existing NLP ap-
plication can greatly improve the performance. It requires
reorganization of the computations and knowledge about
the software/hardware configuration to better design the
program.

Page 6

