Topic Specific Sentiment Analysis with Lexical and
Grammatical Modeling

Tianshuo Deng

Maochen Guan

Yaxing Chen

Computer Science Department

New York University
{td859,mg3364,yc1116}@nyu.edu

Abstract

Sentiment analysis for twitter requires a different approach
comparing to news text on the web. Most researches use
single model and treat tweet as bag of words. Using pars-
ing technique on tweet is hard due to its nature of infor-
mality and noisiness. In this paper, we discuss how to
apply sentiment analysis and parsing on tweets. we built
a two level model that combines lexical and grammatical
model. In lexical model, we treat tweets as bag of words
and achieves relatively high recall but low precision. In
grammatical model, on the other side, we parse the tweet
and build a model with relatively high precision but low
recall. Finally, we combines two models together to show
how the combined model outperforms both lexical model
and grammatical model.

1 Introduction

Tweets are of heavy interests among researchers in text
mining area for its unique natures. Within each tweet,
users idea is often concisely presented due to its 140 charac-
ters limitation. Comparing to news text, it provides in-time
information, people post tweet from their mobile device fre-
quently. As a result, most events, news appear on twitter
at first time very often. Thus, analysing tweets provides
very valuable information.

In this project, we built a system
(www.tweetemotion.com) that monitors tweets for
certain topic and classify them to POSITIVE, NEGA-
TIVE and NEUTRAL based on their sentiment. For
example, given "I love apple” and the topic word ”apple”,
the tweet should be classified as ”positive”. Intuitively,
sentiment is attached to a specific topic, so "I like apple
but I hate microsoft” should be classified as ”positive” for
”apple” and as ”"negative” for ”microsoft”.

Features can be captured by analyzing words in
a tweet. Traditional n-gram method can be used,
[Pang and Lee(2008)]. But it fails to capture the fea-
tures related to the topic. To fix this, in this
paper [Jiang et al.(2011)Jiang, Yu, Zhou, Liu, and Zhao]
from Microsoft, introduced a way of finding words nearly
topic word as features by some predefined rules. Building
such rules requires comprehensive knowledge. Also, from
our observations, the words that appear near the topic do
not always provide concrete and correct information, as

discussed in Section[3.2.1]

To capture the sentiment information precisely, our work
is based on two ideas. First, tweet are treated as bag of
words which performs well when tweet are irregular, for
example(” Oooo #iphone-#epicFail”). However, it does
not work well for those noisy features in the training data
or when more sentiment meaning appeared in same sen-
tence. Therefore in Section[3.2], we built a grammati-
cal model which discovers relationships and dependencies
among words. Grammatical model is able to capture senti-
ment features towards the specific topic. Due to the infor-
mality of tweet, parsing is a challenging task, in section|[2.4]
and Section[3.2.7] we discuss how to preprocess and prune
tweets.

Both models have its own advantage, in Section|[3.3] and
Section[3.4] we discuss how to combine two models together
using backoff rules as well as interpolation. The combined
model surpass the performance of either lexical model or
grammatical model.

2 Experimental Setup
2.1 Data Collection

There are two data sets used in the project. One is the
Senders Analytics whereas another one is fetched from
Twitter.com using simple rules.

1. Senders Analytics (http://www.sananalytics.com)
Senders Analytics contains 2891 tweets. All of the
tweets are manually classified by human.Those tweets
are directly pulled from Twitter without filtering.
The following is an example excerpt from Senders
Analytics: Damn it, listening to apple Siri is making
me want to upgrade my current cellular! [Tagged as
Positive]

The following topics are covered in the Senders Ana-
lytics: Apple, Google, Microsoft, Twitter.

2. Data filtered by pre-defined rules This data set con-
tains 1862 tweets which are retrieved from twitter.com
by selected topics and pre-defined rules listed below.

(a) Create a list that contains both positive and neg-
ative words manually.

(b) If a tweet contains only positive words and there
is no stop word between positive and the topic
then classify it to positive training samples. If

a tweet contains only negative words and there
is no stop word between positive and the topic
then we classify it to negative training samples.

From our observation, those rules filtered the tweets
with high precision. The following is an example:

Listing 1: positive tweet

I really like Microsoft Windows 8 pro.
[Tagged as Positivel

The following topics are covered in the collection:
Amazon, Apple, Facebook, Google, iPad, Lumia, Mi-
crosoft, Obama, Romney, Samsung, Twitter.

In this project, we combine both dataset and pick out 15%
as evaluation data 15% as test data and the remaining 70%
as training data.

Tweets in the dataset are imperfect. A small amount
of tweets are mislabelled due to the limitation of our pre-
defined rules. For instance, ” Twitter on a iPad is horrible.”
is labeled with negative for topic ”iPad”. Also, ” Youtube
for iPad is awesome.” is labeled with positive for topic
7iPad”.

What’s more, some of the tweets are hard to label. For
example, ”Why is twitter so addicting?” can be interpreted
as either positive or negative without context. Also, ”In-
stead of updating your #Twitter why don’t you update
your life.”. The implied sentimental meaning for twitter
can be positive for its strong attraction or negative for its
wasting too much time.

But overall, the number of tweets affected by those prob-
lem is relatively small and is ignored.

2.2 Parsing

Stanford parser is used for constituency parsing and depen-
dency parsing. Ark tagger(Section[3.2.7]) is used for POS

tagging.

2.3 Data Level Parallelism

During the model training step, training data (bulks of
tweets) are sent to the feature extractor to generate a fea-
ture vectors. Extracting features are independent for every
tweet in this step. So we are parallelizing the feature ex-
traction step.

We utilize Java built-in thread pool model to do the par-
allelism. In this project, maximum running thread number
equals to the core number of the machine.

On a machine (4 16-Core 2.1GHz AMD Opteron 6272
with 256GB memory), it achieves 7 times performance
boosting comparing to the sequential version.

2.4 Preprocessing

Due to the natures of tweets, data collection needs to be
preprocessed for next stage processing. The following are
the rules for preprocessing:

1. Convert tweet to lowercase.
2. Remove URLs [| () and hashtag(#).
3. Remove the "rt” (Re-tweet) keyword.

4. Expand word abbreviation ("can’t”, ”don’t”, "u”, 7r”

etc). Example: [don’t] - [do][not].

5. Remove all non-English characters (Japanese, Chinese
etc).

6. Merge duplicated signs. (! - !)

7. Mapping quotation to NN. For example:”UNCLE
SAM” launched a new policy last week. going to be
translated to:” Uncle_Sam”-NN launched a new policy
last week.

8. remove @ sign: If the following word starts with @
sign is the topic, simply remove the ”@”, otherwise,
delete the whole word.

9. Trim invalid start and stop words. Example: ”— 1
love pad. #Q#” - I love pad.

10. Extract emoji symbol. Example: :(what’s the solu-
tion? - ”:(” symbol is extracted as negative token.
Tweet is pruned for next step processing:

Listing 2: preprocessing for tweet

Before:

RT :(what s the solution???? Nokia! "@NusibaT
: @elle_batool

\#Samsung is crap too mine keeps blocking calls
from

coming through" >> http://t.co/IkKVImzy

After:

[what] [is] [the]l [solution] [?] [Nokial]l [!][Samsung][
is][crap]l[too] [mine] [keeps] [blocking] [calls
J[from][coming] [through]

2.5 Maximum Entropy Classifier

We use supervised learning algorithm with maximum en-
tropy classifier. Maximum Entropy Model tries to find a
prediction as the following:

prediction(z’, w) = argmaxw” fi(y)

The maximum entropy model we build would be stored
into a file, from which the classifier could load it when
performing the prediction. Thus, there is no need to build
the model every time. Moreover, the features extracted can
be either string or real number.

3 Experiments and Discussion

3.1 Lexical Model

At the first stage of our model, we built a Max Entropy
model using Lexical Features. To tune our model, two as-
pects of parameters of the model were adjusted:

1. Different features

2. Different classifiers

3.1.1 Features

Following features are used in our lexical model. Here is a
sample tweet and all following features would be illustrated
based on this tweet.

Topic: ipad Tweet: @BereniceMoore - Why?! Its noth-
ing bad. I'm gonna FB inbox you though, this twitter for
ipad is crap

Topic replace First of all, we replace all topic word to
tag TOPIC.

Emoticons Emoticons are extracted based on emoticon
list.

Listing 3: emoticon

posEmoji_normalized=0.0, negEmoji_normalized=0.0

Lexical We defined words that tend to be positive or
negative as sentiment words. Lists of lexicals that are
tagged as positive/negative (Harvard Inquirer) are used
to identify corresponding sentiment word in tweets. After
identifying each sentiment word, we replace it as its senti-
ment tag when extract Bi-gram and Tri-gram features.

Sentiment word normalized frequency The nor-
malized frequency of sentiment word is used to indicate
which kind of sentiment word (positive/negative) appears
more in current tweet. The feature is calculated as follow-

ing:

_ c(POSITIVE)
POSNORMALIZED = (NGt vE)+e(POSTTIVE)
_ c«(NEGATIVE)
NEGNORMALIZED = GNEGaTIVE) +o(POSITIVE)
E.g.

pos_count_normalized=0.0, neg_count_normalized=1.0

N-gram Unigram, Bigram and Trigram features are
used.

E.g.

unigram_why

bigram_nothing NEGATIVE

trigram_TOPIC_is NEGATIVE

Negation A negation particle is attached to a word
precedes it and follows it([Pak and Paroubek(2010)]).
For example, a tweet ”I do not like fish” will
form three bigrams: ”I do+not”, ”do+not like”,
"not+like fish”. Such a procedure improves the ac-
curacy of the classification since the negation plays
a special role in opinion and sentiment expression
([Wilson et al.(2009)Wilson, Wiebe, and Hoffmann]). In
English, we used negative particles "no” and "not”.

E.g.

bigram nothing NEGATIVE

bigram_is NEGATIVE

Distance features Position information finds its way
into features from time to time([Pang and Lee(2008)]). We
also calculate features to indicate the distance relationship
between a sentiment word and the topic word:

neg_nearer , pos_nearer By calculating the nearest
distance between the topic word and Negative, Positive
word in the tweets, it is easy to find out which kind of
sentiment word is nearer to topic word, based on basic sen-
tence structures, the nearer word is more likely to modify
the topic word.

neg_nearby , pos_nearby

At the same time, we can find out is there a sentiment
word nearby the topic word. We judge a sentiment word is
nearby a topic if its distance with topic word is less or equal
than 5 words. Nearby sentiment words are more likely to
modify the topic word.

E.g.

pos_nearby=0

neg nearer=1

pos-_nearer=0

neg_nearby=1

Following table shows the feature tuning process.

Features | F-Score(Pos) F-Score(Neg) F-Score(Neu)
word

frequency 12.85 51.65 39.07
Unigram 77.85 74.81 74.83
Bigram 78.87 77.58 76.61
Trigram 78.13 78.28 74.66
Negation 79.81 78.48 76.69
Distance 80.54 79.07 78.01

3.1.2 Classifiers

We construct 3 different classifiers for model tuning.

Basic Classifier This classifier is a Tri-nary classifier
that would tag each tweet with basic sentiment categories:
Positive, Negative and Neutral.

E.g. Neutral [0.0085] negative [0.0077] positive [0.9839]
In above example, the tweet would be tagged as positive,
since it has the highest probability.

2-level Binary Classifier The 2-level binary classifier
has two binary sub-classifiers:

Neutral / Non-Neutral classifier: This classifier is
trained with data tagged as only two categories, neutral
and non-neutral (positive or negative) and tags tweet as
these two tags.

Negative / Positive: This classifier is trained with
data tagged as Negative or Positive (neutral tweets are
eliminated) and tag tweet in the same way.

We assume that each binary classifier should be more
confident than the basic tri-nary classifier. Therefore, we
would use the neutral /non-neutral classifier to tag a tweet
first, if the tweet is tagged as non-neutral, then we would
back off and use the negative/positive classifier to decide
the tweets final sentiment.

3-level Binary Classifier This classifier works in the
same way as the 2-level classifier, but formed slightly dif-
ferently with 3 binary classifiers:

Neutral / Non-Neutral classifier

Positive / Non-Positive classifier

Negative / Non-Negative classifier

During tagging, we tag each tweet with the Neutral /
Non-Neutral classifier first, if tagged as non-neutral, we
back-off to the Positive / Non-Positive classifier. If tagged
as non-positive, then we back-off the last classifier and de-
cide the final tag.

Following chart shows the comparison among 3 different
classifiers.

Figure 1: Classifier Comparison

82
80

78
W Basic

74 M 2-level

72 3-level

Fscore-Pro Fscore-Neg Fscore-Neu

As is shown above, the multi-level classifier didn’t im-
prove too much compared with the basic classifier, there-
fore, basic lexical classifier would be used in following ex-
periments.

3.1.3 Lexical Model Tuning

When the probablity of 3 categories are very close, well tag
current tag as neutral. Therefore, we set a neutral thresh-
old: when the probablity of the best outcome is lower than
the neutral threshold, then it will be classified as neutral.
Following charts show the result of tuning the threshold on
validation data.

Lexical Precision Tuning

1
0.9
0.8
——Positive
0.7 ——Negative
0.6 —+—Neutral
0.5
0.3 0.5 0.6 0.8 0.9
Neutral Threshold
Lexical Recall Tuning
1
0.9
0.8
—*Positive
0.7 ——Negative
0.6 —+Neutral
0.5

0.3 0.5 0.6 0.8 0.9
Neutral Threshold

Lexical F-Score Tuning

83
81
79

75
73
71 ~+Negative
69 =—Neutral
67

65

——Positive

0.3 0.5 0.6 0.8 0.9
Neutral Threshold

Based on above charts, we can see that the precision of
neutral is decreasing while other two categories precision
are increasing along with the growth of neutral threshold.
Meanwhile recall has the opposite trend. That is because
while increase the threshold, more tweets tend to be tagged
as neutral, therefore neutral recall is increasing and preci-
sion is decreasing. The best result we achieved by tuning
the threshold is as following(when A = 0.6):

Best Result ‘ Positive Negative Neutral
F-score 81.77 77.51 78.65
Recall 0.76 0.74 0.84

Precision 0.87 0.81 0.73

3.2 Grammatical Model
3.2.1 Inefficiency of Using Lexical Model

Lexical Model has its limitations when tweets contains mul-
tiple keywords that have contradictory meanings or com-
plex sentence structures. Lexical Model recognize the num-
ber of positive words and negative words and their distance
to the topic word. But it does not capture explicit rela-
tionships between words. On the other hand Grammatical
Model captures relationships between words and therefore
able to deal with such situation.

3.2.2 Parsing

Tweet is parsed using ”stanford parser”. To derive relation-
ships/dependencies among words, the tweet should first be
POS tagged and used to construct a constituency parsing
tree. For the tweet ”I bought a beautiful iphone”, following
parsing tree is constructed from stanford parser.

Figure 2: Constituency Parsing with Stanford Parser

ROOT

bought pr” n TN
~ | AN

N
a beautiful iphone

3.2.3 Dependency Parsing

Dependency parsing shows the relationships between
words. In the above tweet, we are interested relation-
ships/dependencies that reveals sentimental information,
in this case, its ”beautiful-iphone”. By providing a con-
stituency parsing tree, a dependency parsing tree will be
generated as shown in the following:

Figure 3: Dependency Parsing Tree
ROOT

dobj det

nsub

subj L amod |
I <«—— bought a beautiful <——— iPhone

Listing 4: dependencies

[nsubj (bought-2, I-1), root(ROOT-0, bought-2), det(
iphone-5, a-3), amod(iphone-5, beautiful-4),
dobj (bought -2, iphone-5)]

amod (iphone-5,beautiful-4) shows the dependency be-
tween iphone and beautiful: beautiful is an adjective mod-
ifier to iphone. Following section discuss features captured
from such dependency parsing tree.

3.2.4 Features From Dependency Parsing

For sentiment analysis, we focus on certain types of depen-
dency between topic word and other word in the sentence.

1. Transitive verb and Topic relation: capture
dobj(dominate object) dependency between verb and
the topic word.
given ”I hate Microsoft” and topic ”Microsoft”, fea-
ture love_topic should be captured

relation: capture
dependency between topic

2. Topic and Transitive verb
nsubj(noun subject)
and verb word.
given ”Microsoft rocks!” and topic ”Microsoft”, fea-
ture topic_rocks should be captured

3. Adjective head is the topic, or say, Adjective directly
modifies topic: capture amod(adjective modifier) de-
pendency between adjective word and topic word.
given "I bought a beautiful iPhone” and topic
”iPhone”, beautiful _topic is captured

4. Extract relative clause modifier: capture nsubj depen-
dency between adjective word and topic word.
given "I bought an iPhone, which is beautiful”, beau-
tiful _topic is captured

5. Extract Adjective+copula+topic: capture prep_xx de-
pendency
given "I am keen on iPad”. keen_on_topic should be
captured

6. Extract Topic+verb+adj: capture dep between a verb
and topic and then capture advmod relationship
given ”iPhone runs smoothly comparing to android”
and topic ”iPhone”, topic_run_smoothly is captured

7. Extract general dependency:
given ” Apple : Siri is amazing !” amazing_dep_topic is
captured

3.2.5 BFS Feature

Besides the dependencies and relationship direct towards
the topic word, we also capture dependencies for tweets
like:

”I love the camera of iPhone5”

In this case, camera has a positive sentiment, and is re-
lated with the topic word. as shown in following depen-
dency parsing:

Figure 4: Dependency Parsing Tree

ROOT
‘oot m ﬂ;_m\
dep det
I —» love the -#—— camera of iPhone5

To capture features like this, we introduce a more fuzzy
way to discover dependencies among words: Breadth First
Search features. We start from certain types of words
that may carry sentimental information, they are ”JJ”,
7JJS”, "JJR”, ”RB”, "RBR”, "RBS”, "VB”, "VBD”,
"VBN”, "VBG”, "VBP”, "VBZ”. Then we traverse to
the topic word and record the path. Finally we con-
catenate the node on the path with the relation type.
So we will get features like "I love working in google”,
BFS_love_xcomp_working_prep-in_topic is captured "I love
the camera of iPhone5”, BFS_love_dobj_iphone_poss_topic
is captured

To reduce the dimension and make the features more
general words in the middle of the traversal path are re-
placed with its pos tag. So for tweet "I love the camera of
iphone 57, BFS_love_dobj_[NN]_poss_topic is captured

3.2.6 Negation Handling

Negation of a word carries opposite meaning, from a depen-
dency parsing tree of a tweet, negation can be tracked by
capture "neg” dependency. To handle negation, we prefix
the word with "neg_” whenever a negative relationship is
captured. So for ”I don’t love iphone”, neg_love_topic will
be captured.

3.2.7 Enhance Tokenization and POS Tagging

One of the difficulty for analyzing Tweets is its informality.
Following are two samples:

Listing 5: tweet with special tokens

Texas \#Rangers are in the World Series! Go
Rangers!!!! ! 111! http://fb.me/D2LsXBJx \#
trangers

RT @eye_ee_duh_Esq: LMBO! This man filed an
EMERGENCY Motion for Continuance on account of
the Rangers game tonight! << Wow lmao

We came up manually pruning rules(Section[2.4]), but to
further improve the pruning procedure for parsing, we need
a specific POS tagger that deals with those special tokens
in tweets, like hashtags, user mentioning, retweet mark etc.

The Ark group in Carnegie Mellon University provides
fast and robust Java-based tokenizer and part-of-speech
tagger for Twitter, its training data of manually labeled
POS annotated tweets. Besides better tokenization, it pro-
vides better POS tagging. We use the tagger in following
aspects.

1. Enhance POS tagging

By default, stanford parser will tag each word with a
pos tag which doesnt work well for tweets. So we used
ark tagger to tag the sentence first and then pass it to
the stanford parser along with their POS tags

2. Tweet specific pruning
Since Ark tagger tags Garbage Word, URL, emoticon,
RT, we use those information to prune the tweets for
better parsing result. We start from the first word and
prune the sentence until we reach a word that is not
Garbage Word, URL, RT. Following figure shows how
a tweet is tagged and pruned.

Figure 5: Ark Tagger For Pruning

INFO : tweet: [apple]RT @eye_ee_duh_Esq: LMBO! This man filed an EMERGENCY
Motion for Continuance on account of the Rangers game tonight! « Wow lmao

INFO : using ark tagger
INFO : ~ | RT

INFO : @ | @eye_ee_duh_Esq
INFO @ ~ |

INFO : ! | LMBO
INFO @, | !

INFO : D | This
INFO : N | man

INFO : vV | filed
INFO : D | an

INFO : N | EMERGENCY
INFO : N | Motion
INFO : P | fTor

INFO : N | Continuance
INFO : P | on

INFO : N | account
INFO : P | of

INFO : D | the

INFO : ~ | Rangers
INFO : N | game
INFO : N | tonight
INFO @, | !

INFO @ ~ | «

INFO : ! | Wow

INFO : ! | 1mao

INFO : after preprocess[This->DT, man->NN, filed->VB, an->DT, EMERGENCY->NN,

Motion-=MNN, for, Continuance-=MN, on, account-=NN, of, the-=DT,
Rangers->NNP, game->NN, tonight-=NMN, ., «, ,, ,]

3.2.8 Neutral Threshold Tuning

As discussed in Section[3.1.3], we use Neutral Threshold to
finer tuning the classifier, when the Neutral Threshold is
higher, the classifier tends to classify the word to neutral
instead of positive or neutral. Following figures shows the
result of classification with neutral threshold from 0.33 to
1.0

Precision
1.2
1 DWH
0.8
0.6 ——— ~=Positive
0.4 ~#-Negative
0.2 Neutral
0
0.30.350.40.450.50.550.60.650.70.750.80.850.9
Neutral Threshold
Recall
1.2
1
0.8
0.6 ~+Positive
04 S 899 — -#-Negative
0.2 Neutral
0
0.330.40.450.50.550.60.650.70.75 0.8 0.85 0.9 0.95
Neutral Threshold
F-score
100
80
60 m:mw
—-pos
40 “neg
20 neutral
0

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Neutral Threshold

‘When neutral threshold=0.55, we have the best result:

Best Result | Precision Recall F-score
Positive 0.927 0.513 66.01
Negative 0.907 0.453 60.47
Neutral 0.639 0.962 76.8

Comparing to Lexical Model, grammatical model has
a high precision and low recall. In Section[3.3] and Sec-
tion[3.4], we discuss how to take advantage from both gram-
matical and lexical model to increase the precision and re-
call.

3.3 Backoff Model

Since grammatical model provides higher precision, we use
the grammatical model to classify the tweet first, and ac-
cording to some rules, if the prediction is not confident then
we backoff to lexical model. We build the back off model
as follows:

1. Try to classify the tweets with grammatical model

2. if 1) the features extracted is empty(this happens
when a tweet can not be parsed by stanford parser)

or

2) if the probablity of the prediction is less than a backoff
threshold then back off to a lexical model

Different backoff threshold are tuned as shown in the
following figure

Figure 6: Backoff Tunning

Precision of Prediction

1
0.9
- e ==, SE—
0.8 8]
—— ~Positive
0.7 ——Negative
0.6 ~“-Neutral
0.5
1 2 3 4 5 6 7 8
Back-off Threshold
Figure 7: Backoff Tunning
Recall of Back-off Prediction
1
0.9
0.8
—=—Positive
0.7 —-Negative
0.6 ==Neutral
0.5
1 2 3 4 5 6 7 8
Back-off Threshold
Figure 8: Backoff Tunning
F-score of Back-off Prediction
85
80
75
—Positive
70 ~*Negative
65 ——Neutral
60

0 02 04 06 08 085 095 1
Back-off Threshold

When backoff threshold is set to 0.8 we get the following
result:

Best Result ‘ precision recall f-score

positive 80.5 79.7 80.1
negative 75.1 75.5 75.3
neutral 81.1 81.4 81.3

The backoff model outperforms lexical model and gram-
matical model.

3.4 Interpolated Model

Another comprehensive model we built is an interpolated
model. Using following formulas we combined the predic-
tion result from both lexical and grammatical models.

P(class) = APiegical(class) + (1 — A) Pyrammatical (class)
prediction = arg maxXsentiment P(class)

By tuning the value of A, we tuned the weight of lexi-
cal and grammatical model, the higher the A is, the more
probable is lexical model dominating the result. Therefore,
the higher the precision should go while the recall should
decrease.

Following charts show our tuning result.

Precision of Interpolated Prediction

1
0.9
0.8
~+ Positive
07 —~Negative
0.6 —#-Neutral
0.5
0 02 04 06 08 085 095 1
Lambda
Recall of Interpolated Prediction
1
> Lﬂ\l\ﬂﬁ,n—ﬁ,g
0.8 ..4—""__._:___ v —
0.7 ?”' ~—Positive
0.6 A *Negative
-&-Neutral

05 —

0.4
0 02 04 06 08 085 095 1
Lambda

F-score of Prediction

0.9
0.8 -

~*Positive
0.7 ““Negative
0.6 —~Neutral
0.5

0 02 04 06 08 085 095 1
Lambda

Based on the tuning result, following table shows the
best result we achieved: When A\ = 0.85

Best Result ‘ Positive Negative Neutral

F-score 82.4 76.4 81.7
Recall 0.812 0.767 0.811
Precision 0.821 0.745 0.818

4 Conclusions

Tweets are very different from news text and therefore re-
quire special treatment. Pruning noisy information is an
effective way to get more formal sentences for analysis and
parsing In Section[2.4] and Section[3.2.7], we used word
level pruning techniques which reduces the amount of noisy
words.

Parsing can be used to get more precise result by cap-
turing relationship among words. But it fails when the
tweet cannot be parsed correctly which happens very of-
ten. On the other hand, Lexical Models will always able
to extract features from a sentence but fails when a tweet
contains complex sentiment information. Therefore, a com-
bined approach takes advantages from both lexical model
and grammatical model and outperforms both models.

References

[Jiang et al.(2011)Jiang, Yu, Zhou, Liu, and Zhao]
L. Jiang, M. Yu, M. Zhou, X. Liu, and T. Zhao.
Target-dependent twitter sentiment classification. Now
Pub, 2011.

[Pak and Paroubek(2010)] A. Pak and P. Paroubek. Twit-
ter based system: Using twitter for disambiguating sen-
timent ambiguous adjectives. In Proceedings of the
5th International Workshop on Semantic Evaluation,
pages 436-439. Association for Computational Linguis-
tics, 2010.

[Pang and Lee(2008)] B. Pang and L. Lee. Opinion mining
and sentiment analysis. Now Pub, 2008.

[Wilson et al.(2009)Wilson, Wiebe, and Hoffmann]
T. Wilson, J. Wiebe, and P. Hoffmann. Recogniz-
ing contextual polarity: An exploration of features
for phrase-level sentiment analysis. Computational
linguistics, 35(3):399-433, 2009.

